↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
A_IN_ → U1_1(b_in_)
A_IN_ → B_IN_
B_IN_ → U3_1(c_in_)
B_IN_ → C_IN_
C_IN_ → U4_1(d_in_)
C_IN_ → D_IN_
D_IN_ → U5_1(b_in_)
D_IN_ → B_IN_
A_IN_ → U2_1(e_in_)
A_IN_ → E_IN_
E_IN_ → U6_1(f_in_)
E_IN_ → F_IN_
F_IN_ → U7_1(g_in_)
F_IN_ → G_IN_
G_IN_ → U8_1(e_in_)
G_IN_ → E_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
A_IN_ → U1_1(b_in_)
A_IN_ → B_IN_
B_IN_ → U3_1(c_in_)
B_IN_ → C_IN_
C_IN_ → U4_1(d_in_)
C_IN_ → D_IN_
D_IN_ → U5_1(b_in_)
D_IN_ → B_IN_
A_IN_ → U2_1(e_in_)
A_IN_ → E_IN_
E_IN_ → U6_1(f_in_)
E_IN_ → F_IN_
F_IN_ → U7_1(g_in_)
F_IN_ → G_IN_
G_IN_ → U8_1(e_in_)
G_IN_ → E_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
E_IN_ → F_IN_
F_IN_ → G_IN_
G_IN_ → E_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
E_IN_ → F_IN_
F_IN_ → G_IN_
G_IN_ → E_IN_
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PrologToPiTRSProof
E_IN_ → F_IN_
F_IN_ → G_IN_
G_IN_ → E_IN_
E_IN_ → F_IN_
F_IN_ → G_IN_
G_IN_ → E_IN_
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
C_IN_ → D_IN_
B_IN_ → C_IN_
D_IN_ → B_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
C_IN_ → D_IN_
B_IN_ → C_IN_
D_IN_ → B_IN_
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
C_IN_ → D_IN_
B_IN_ → C_IN_
D_IN_ → B_IN_
C_IN_ → D_IN_
B_IN_ → C_IN_
D_IN_ → B_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
A_IN_ → U1_1(b_in_)
A_IN_ → B_IN_
B_IN_ → U3_1(c_in_)
B_IN_ → C_IN_
C_IN_ → U4_1(d_in_)
C_IN_ → D_IN_
D_IN_ → U5_1(b_in_)
D_IN_ → B_IN_
A_IN_ → U2_1(e_in_)
A_IN_ → E_IN_
E_IN_ → U6_1(f_in_)
E_IN_ → F_IN_
F_IN_ → U7_1(g_in_)
F_IN_ → G_IN_
G_IN_ → U8_1(e_in_)
G_IN_ → E_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
A_IN_ → U1_1(b_in_)
A_IN_ → B_IN_
B_IN_ → U3_1(c_in_)
B_IN_ → C_IN_
C_IN_ → U4_1(d_in_)
C_IN_ → D_IN_
D_IN_ → U5_1(b_in_)
D_IN_ → B_IN_
A_IN_ → U2_1(e_in_)
A_IN_ → E_IN_
E_IN_ → U6_1(f_in_)
E_IN_ → F_IN_
F_IN_ → U7_1(g_in_)
F_IN_ → G_IN_
G_IN_ → U8_1(e_in_)
G_IN_ → E_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
E_IN_ → F_IN_
F_IN_ → G_IN_
G_IN_ → E_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
E_IN_ → F_IN_
F_IN_ → G_IN_
G_IN_ → E_IN_
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
E_IN_ → F_IN_
F_IN_ → G_IN_
G_IN_ → E_IN_
E_IN_ → F_IN_
F_IN_ → G_IN_
G_IN_ → E_IN_
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
C_IN_ → D_IN_
B_IN_ → C_IN_
D_IN_ → B_IN_
a_in_ → U1_(b_in_)
b_in_ → U3_(c_in_)
c_in_ → U4_(d_in_)
d_in_ → U5_(b_in_)
U5_(b_out_) → d_out_
U4_(d_out_) → c_out_
U3_(c_out_) → b_out_
U1_(b_out_) → a_out_
a_in_ → U2_(e_in_)
e_in_ → U6_(f_in_)
f_in_ → U7_(g_in_)
g_in_ → U8_(e_in_)
U8_(e_out_) → g_out_
U7_(g_out_) → f_out_
U6_(f_out_) → e_out_
U2_(e_out_) → a_out_
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
C_IN_ → D_IN_
B_IN_ → C_IN_
D_IN_ → B_IN_
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ NonTerminationProof
C_IN_ → D_IN_
B_IN_ → C_IN_
D_IN_ → B_IN_
C_IN_ → D_IN_
B_IN_ → C_IN_
D_IN_ → B_IN_